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Electronic Nose

• Electronic olfaction system equipped with a model
nose was firstly proposed to mimic biological
olfaction mechanism as early as 1982.

• One key characteristic of model nose is the odorant
detectors (primary neurons) respond to a wide
range of chemicals.

K. Persaud and G. Dodd, “Analysis of discrimination mechanisms in the
mammalian olfactory system using a model nose,” Nature, 1982.

J.W. Gardner and P.N. Bartlett, “A brief history of electronic noses,” Sens.
Actu. B Chem., 1994.
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Electronic Nose
• A basic e-nose system includes some components.

• Great progress is made in e-nose.
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1982

L. Zhang and F.C. Tian, “Performance Study of Multilayer Perceptrons in Low-Cost
Electronic Nose,” IEEE Trans. Instrumentation and Measurement, 2014.
L. Zhang and D. Zhang, “Efficient Solutions for Discreteness, Drift, and Disturbance (3D)
in Electronic Olfaction,” IEEE Trans. Systems, Man, and Cybernetics: Systems, 2018.

Metal oxide semiconductor (MOS) chemical sensor array

Algorithms



Challenge on MOS Sensors
• Sensing unit plays a crucial role in e-nose.

• Algorithm benefits from sensing, but is also
constrained by sensing.
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Drift of MOS sensors is always a tricky problem and a disaster of e-nose. 

Lei Zhang, Fengchun Tian, and David Zhang, “Electronic Nose: Algorithmic
Challenge,” Springer, 2018. pages: 1-339.



Challenge on MOS Sensors
• What is sensor drift?

This is caused by unknown dynamic process such as
poisoning, aging or environmental variations
(temperature, humidity, etc.).

Drift causes outliers in data samples and data
distribution shift (covariate shift).
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M. Holmberg, et al., “Drift counteraction in odour recognition applications:
lifelong calibration method,” Sens. Actu. B: Chem, 1997.

Domain 1 (w/o shift) Domain 2 (shifted)

drifting



Challenge on MOS Sensors
• What is the impact of drift?
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Impact: drift brings classification algorithm to big errors.



Challenge on MOS Sensors
• How to deal with drift?

Align feature distribution between domain 1 and domain 2,
then compensate drift compact.
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Classifier boundary

L. Zhang and D. Zhang, “Domain adaptation extreme learning machines for
drift compensation in e-nose systems,” IEEE Trans. Instru. Measu., 2015.

Drift compensation
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• Calibration transfer in E-nose mainly refers to instrumental
calibration between systems (master vs. slave).

✓Standardization is the classical technique for calibration
transfer, including standardization on model coefficients f,
sensor response x, and prediction output y.

✓Standardization on sensor responses such as direct
standardization (DS), piece-wise direct standardization (PDS),
OSC, CC, and GLSW are most popular.

• But, Transfer learning is a new learning methodology towards
out-of-distribution generalization and adaptation.

11

Difference from Calibration Transfer

R. Laref, et al., “Support vector machine regression for calibration transfer
between electronic noses dedicated to air pollution monitoring,” Sensors, 2018.



• Machine learning is a modeling technique with 
statistics for parameters estimation of unknown func.

• To be simple, given a dataset (X, y) with label y, a 
statistical learning model is to find a mapping func. 
(hypothesis) f(.) between X and y, such that

y=f(x)

• A learning problem to be solved is how to find f(.)?

• Many learning techniques from shallow to deep.

• Gradient descent based optimization techniques.

12

A Revisit of Machine Learning



A Revisit of Machine Learning

• To find an optimal mapping (solution) f(.), machine
learning is transformed to an optimization technique.

• A general optimization (minimization) problem of 
learning is,

• R[.] is the expected risk defined by the loss function
with input (X,y) sampled from a probabilistic
distribution Pr and parameter θ of f(.)

• Pr should be an independent identical distribution (i.i.d.) 
of test samples.
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• However, due to the infinite space of the data
distribution, we can only have a subset of the data (i.e.,
training data).

• So, the expected risk minimization is transformed into 
an empirical risk optimization problem,

Where m is the size (number) of the finite training subset 
sampled from the distribution Pr. 14

A Revisit of Machine Learning

x1

x
2

subset

Infinite space



• Okay, now we can have a view of a general machine learning
framework (Probably Approximate Correct, PAC).

• A prior assumption is the i.i.d. condition.

The training set and test sample should be sampled from an 
independent identical distribution (i.i.d.)

Unfortunately, i.i.d. is not realistic. What should we do?
15

A Revisit of Machine Learning
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• Generalization is the final objective of ML task.

• The optimized parameter θ of the mapping
function f (.) on a training subset sampled from Pr
often fails to generalize a test subset sampled from
a non i.i.d. distribution Pr’.

• This is analogy to sensor drift (distribution shift),
which opens the research on TL for drift in e-nose.
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Dilemma of Non i.i.d.

Train set (Pr) Test set (Pr’)

Fail to generalize



A Preliminary of Transfer Learning

Toy Examples: 

Semantic related but distribution different tasks
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Computer Vision
(image classification)

Natural Language Processing
(translation)

Text Recognition

Behavior learning skills (domain common knowledge )



Fine-tune Paradigm

• Transfer learning has been a widely used technique 
in a wide spread of applications.

• In deep learning era, you may hear from about the 
“fine-tune” technique for down-stream tasks.
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Smart 
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Fine-tune (transferable training) model/network is a key step



A Preliminary of Transfer Learning

Problem definition:

Given a target task (DT) without labels (or few labels), 
how to learn a reliable predictor/classifier for DT, 

Not feasible? (TL emerges)

• A sufficiently labeled, semantic related but 
distribution different source task (DS) is leveraged as 
auxiliary training data.

• Two key points:

1) Overcomes the label deficiency problem;

2) But introduces  non i.i.d. problem between DT and DS
19



A Preliminary of Transfer Learning

History of Transfer Learning (1990s-2020s):
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1991
(bud)

2006
(milestone)

2015
(milestone)

2020s
(mature)

Explosion periodBoom periodBudding period

Pratt L. 
(Neural network) Ben-David et al.

(Domain adaptation theory)

2010
(milestone)

Pan S.J. and Yang Q. (Survey on Transfer learning)
Saenko et al. (Visual domain adaptation)

Long et al. (Deep network adaptation)
Ganin et al. (Adversarial domain adaptation)
Tzeng et al. (Deep adversarial transfer)



Definition of TL

What is transfer learning?

Transfer learning or domain adaptation aims to leverage a 
sufficiently labeled, distribution different but semantic related 
source domain for training and recognizing target domain 
samples.
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Domain Adaptation Theory

Why are transfer learning models or algorithms 
effective and reliable?

Namely, how to guarantee the models or algorithms 
to have low generalization error on target data?

Ben-David Shai et al. induced a generalization bound 
of domain adaptation, widely used as a theoretical 
guidance for a series of models and algorithms.
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Ben-David, S., Blitzer, J., Crammer, K., & Pereira, F. (2006). Analysis of 
representations for domain adaptation. In: Advances in neural information 
processing systems



Shai Ben-David’s generalization bound theorem:

• To be simple, the expected target error 𝜖𝑇 ℎ is 
bounded as (proof based on triangular inequality is 
removed)

• ℋ is the set of hypothesis.

• The upper bound of 𝜖𝑇 ℎ consists of four terms.

23

Ben-David, S., Blitzer, J., Crammer, K., & Pereira, F. (2006). Analysis of representations 
for domain adaptation. In: Advances in neural information processing systems

Domain Adaptation Theory



Distribution Difference Measure

Distribution alignment is the key part of transfer 
learning. 

How to measure distribution difference between two 
distributions P and Q?

• MMD (Maximum Mean Discrepancy) (Gretton et al. NIPS’06, 
NIPS’09, JMLR’12)

• HSIC (Hilbert Schmidt Independence Criterion) (Gretton et al. 
ALT’05; Yan et al. TCYB’17, Wang et al. ICCV’17, CRTL)

• Bregman divergence (Si et al. TKDE’10, TSL)

• Moment statistics (Herath et al. CVPR’17, ILS; Sun et al. 
arXiv’17, CORAL; Peng et al. ICCV’19)

24



Theory---->Algorithm

• Induced by the generalization bound theory, a 
number of models and algorithms are emerged, by 
focusing on three components during design.

1) Source error 

2) Domain discrepancy

3) Combined error

25



Transfer Learning Algorithm

How to design TL/DA models and algorithms?

• A taxonomy:
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L. Zhang and X. Gao, Transfer Adaptation Learning: A Decade Survey, IEEE TNNLS 2022.
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TL Algorithm for E-nose
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Since 2015, transfer learning/domain adaptation
methodology has been widely used for drift
adaptation(a)/instrumental calibration (b) in E-noses.
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(a) TL for drift compensation (b) TL for instrumental calibration



TL Algorithm for E-nose
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• Two branches in recent years:

• Classifier transfer (parameter adaptation): How to 
learn domain-common classifier adapted to two 
domains?

• Feature transfer (subspace adaptation ): How to 
learn domain-common feature representation 
(projection) between two domains?



TL Algorithm for E-nose
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• Two branches in recent years:

• Classifier transfer (parameter adaptation): How to 
learn domain-common classifier adapted to two 
domains?

• Feature transfer (subspace adaptation ): How to 
learn domain-common feature representation 
(projection) between two domains?



Domain Adaptive ELM (DAELM)
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Consider M target tasks with few labeled data by learning 
ELMs on a sufficiently labeled source domain.

Source (batch 
1 or master)

labeled

Target 2 (slave 2)Target 1 (slave 1)

labeled labeled

Target M (slave M)

∙∙∙

L. Zhang and D. Zhang, “Domain adaptation extreme learning machines for Drift 
Compensation in E-nose Systems,” IEEE Trans. Instru. Meas., vol. 64, no. 7, 2015.



Extreme Learning Machine
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ELM was first proposed for solving a single-layer 
feed-forward network (SLFN) by Huang et al. 2004

G.-B. Huang, Q.-Y. Zhu, and C.-K. Siew, “Extreme learning machine: Theory and applications,” 
Neurocomputing, vol. 70, nos. 1–3, pp. 489–501, Dec. 2006.
G.-B. Huang, H. Zhou, X. Ding, and R. Zhang, “Extreme learning machine for regression and 
multiclass classification,” IEEE Trans. Syst., Man, Cybern. B, Cybern., vol. 42, no. 2, pp. 513–
529, Apr. 2012



Extreme Learning Machine
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Model and Algorithm:

• Given N samples [x1,x2, . . . , xN ] and their corresponding 
ground truth [t1,t2, . . . , tN ], a general ELM model,

• β is the output weights to be solved. ℋ is the random 
hidden layer. C is the penalty and 𝜉 is the prediction error.



Extreme Learning Machine
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Model and Algorithm:

• Analytically determined solution (closed-form soultion)

• Overdetermined problem (N>L)

• Underdetermined problem (N<L)

• H is the random weights in hidden layer

• ELM does not need to be tuned like Back-propagation.



Common Problem of ELM
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Similar to general machine learning, ELM is not transferable:

• For classification problem, labels are needed for ELM.

• ELM is also conditional on the distributions (i.i.d.).

• ELM classifier is not transferable to other domains. 

• Therefore, we expect some advanced versions of ELM by 
introducing domain adaptation and transfer learning.

𝑃(𝑠) ≠ 𝑃(𝑡)

𝑃(𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔) 𝑃(𝑡𝑒𝑠𝑡)

ELM is also not distribution adaptive



Domain Adaptive ELM (DAELM)
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DAELM.v1 (unlabeled target data is not used)

Note that \beta is classifier



Domain Adaptive ELM (DAELM)
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DAELM.v2 (unlabeled target data is used with pseudo labels)

Pre-trained source base classifier
Note that \beta is classifier



Domain Adaptive ELM (DAELM)
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Prediction/inference stage of unlabeled target data:

DAELM.v1:

DAELM.v2:

Note that \beta is classifier



Experiment
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E-nose drift data via (10 batches, 16 gas sensors, acquired from 
2008 to 2011 containing 36 months by Vergara et al. 2012):

L. Zhang and D. Zhang, “Domain adaptation extreme learning machines for Drift 
Compensation in E-nose Systems,” IEEE Trans. Instru. Meas., vol. 64, no. 7, 2015.



Experiment
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Gas classification performance
Batch 1 is fixed as source domain

Batch k is fixed as source domain and batch k+1 is target domain



TL Algorithm for E-nose
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• Two branches in recent years:

• Classifier transfer (parameter adaptation): How to 
learn domain-common classifier adapted to two 
domains?

• Feature transfer (subspace adaptation ): How to 
learn domain-common feature representation 
(projection) between two domains?



Cross-domain ELM
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• In DAELM model, ELM is used as a classifier (𝛽). 
Here, we consider it as a feature projector (𝛽). 

Step 1: Project data into a unified 
subspace with discrimination
Step 2: Minimize the distribution shift 
with mean distribution discrepancy
Step 3: Energy preservation

Y. Liu, L. Zhang, P. Deng and Z. He, “Common Subspace Learning via Cross-domain 
Extreme Learning Machine,” Cognitive Computation, 2017.

Final model (objective function)



Experiment
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Gas classification performance on our E-nose data (3 systems)



Cross-domain Discriminative Subspace Learning (CDSL)
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• Feature transfer aims to learn a domain-invariant 
mapping, such that the domain shift caused by 
instrumental drift is removed in the latent subspace.

L. Zhang, Y. Liu and P. Deng, “Odor recognition in multiple E-nose systems with 
cross-domain discriminative subspace learning,” IEEE Trans. Instr. Meas., 2017.



Cross-domain Discriminative Subspace Learning (CDSL)
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• How to learn the feature mapping P (linear transform)?

L. Zhang, Y. Liu and P. Deng, “Odor recognition in multiple E-nose systems with 
cross-domain discriminative subspace learning,” IEEE Trans. Instr. Meas., 2017.

Source Target

Latent subspace

P
Classifier 

(SVM)



Experiment
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Gas classification performance on our E-nose data (3 systems)

10% improvement on the average classification accuracy with domain transfer



Domain Regularized Component Analysis (DRCA)
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• Motivation: Principle component analysis (PCA) is 
used for dimension reduction, but only on single 
domain, and does not work on multiple domains 
with shift.

• We therefore consider regularize the PCA with target 
domain and simultaneously reduce domain shift.

L. Zhang, et al., “Anti-drift in E-nose: A Subspace Projection Approach with Drift 
Reduction,” Sensors and Actuators B: Chemical, 2017.

PCA Regularization Shift reduction

source target alignment



Domain Regularized Component Analysis (DRCA)
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L. Zhang, et al., “Anti-drift in E-nose: A Subspace Projection Approach with Drift 
Reduction,” Sensors and Actuators B: Chemical, 2017.

PCA Regularization Shift reduction

source target alignment



Domain Regularized Component Analysis (DRCA)
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L. Zhang, et al., “Anti-drift in E-nose: A Subspace Projection Approach with Drift 
Reduction,” Sensors and Actuators B: Chemical, 2017.

Class 1

Class 2



Experiment
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E-nose drift data via (10 batches, 16 gas sensors, acquired from 
2008 to 2011 containing 36 months by Vergara et al. 2012):



Experiment
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E-nose drift data via (10 batches, 16 gas sensors, acquired from 
2008 to 2011 containing 36 months by Vergara et al. 2012):

With drift adaptation by DRCA, the distribution is successfully aligned



Experiment
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Classification accuracy by training SVM on transformed data



Experiment
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Gas classification performance on our E-nose data (3 systems)
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Summary vs. Future
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In this talk, a systematic introduction of transfer learning and 
its application for chemical sensors is given.

• Transfer learning plays a vital role in E-noses with robustness.

• Drift compensation still faces a challenge for real application.

• Since pattern recognition is a key unit for E-nose instrument, 
advanced transfer learning technique is wonderful.

• E-nose faces real application scenario in the future.

• Gas sensors are still the core component of E-nose.
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