isocs ® ' LiVE Group

Transfer Learning Algorithms for Chemical Sensor Arrays

Prof. Lei Zhang

School of Microelectronics and Communication Engineering,
Chongqing University, Chongging, China
https://www.leizhang.tk

Paper Resources and Open-source Codes (Python vs. Matlab)

Google scholar: https://scholar.google.com/citations?user=Nt9es7kAAAAJ&hl=zh-CN

ISOCS Winter School
Bormio, Italy, 17/01/2024



https://www.leizhang.tk/
https://scholar.google.com/citations?user=Nt9es7kAAAAJ&hl=zh-CN

Contents

e Part I: Background and Preliminary

* Part Il: Transfer learning: Concept, Theory and
Algorithms

 Part lll: Transfer Learning Algorithms for E-nose
* Summary vs. Future



Contents

e Part I: Background and Preliminary



International journal of science

Electronic Nose

 Electronic olfaction system equipped with a model
nose was firstly proposed to mimic biological
olfaction mechanism as early as 1982.

* One key characteristic of model nose is the odorant
detectors (primary neurons) respond to a wide
range of chemicals.

K. Persaud and G. Dodd, “Analysis of discrimination mechanisms in the
mammalian olfactory system using a model nose,” Nature, 1982.

JW. Gardner and P.N. Bartlett, “A brief history of electronic noses,” Sens.
Actu. B Chem., 1994.




Naturceey:

International journal of science

Electronic Nose

* A basic e-nose system includes some components.

e Great progress is made in e-nose.

4 1-Pump with flow-meter;
1 AV 2-Sensor chamber; 3
A 3-Personal computer; @
4-Valve;
2

—> —>
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Pattern
Controller Analysis
[ A/D Device ] /
Algorithms

Metal oxide semiconductor (MOS) chemical sensor array

L. Zhang and F.C. Tian, “Performance Study of Multilayer Perceptrons in Low-Cost
Electronic Nose,” IEEE Trans. Instrumentation and Measurement, 2014.

L. Zhang and D. Zhang, “Efficient Solutions for Discreteness, Drift, and Disturbance (3D)
in Electronic Olfaction,” IEEE Trans. Systems, Man, and Cybernetics: Systems, 2018.



* Algorithm benefits from sensing,
constrained by sensing.

Odor——>

Challenge on MQOS Sensors

* Sensing unit plays a crucial role in e-nose.

O|O0|O|O|O|O
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O|0|0|0|O|O

O|O0|0|0|O|O

Sensing unit

X2

—— CPU-Hardware ——

but is also

——> Output

Hardware unit

v

Algorithm unit

Drift of MOS sensors is always a tricky problem and a disaster of e-nose.

Lei Zhang, Fengchun Tian, and David Zhang, “Electronic Nose: Algorithmic
Challenge,” Springer, 2018. pages: 1-339.
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Challenge on MQOS Sensors

* What is sensor drift?

This is caused by unknown dynamic process such as
poisoning, aging or environmental variations
(temperature, humidity, etc.).

Drift causes outliers in data samples and data
distribution shift (covariate shift).

A

drifting

" Domain 1 (w/o shift Domain 2 (shifted)=

M. Holmberg, et al., “Drift counteraction in odour recognition applications:
lifelong calibration method,” Sens. Actu. B: Chem, 1997.

[
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Challenge on MQOS Sensors

* What is the impact of drift?

A A

drifted
—>

—
»

Domain 1 (w/o shif’E) Domain 2 (shifted)
Machine learning algorithm infefence
(-} . oo
. |mpact 0,0 O
Classifier boundar Lo o ©%0 00
Y Sooi,fo::i |:> °.°oo,,o°:o°: Classifier boundary

%0 0°. 0 o %0 o°. 0 o

o oo °°°°o o° c,oo o ooooo
0 0 0 o o 0 o0 o
Correct Big error

Impact: drift brings classification algorithm to big errors.
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Challenge on MQOS Sensors

e How to deal with drift?

A A

drifted
—>

Domain 1 (w/o shiﬁ) Domain 2 (shiftedf
Align feature distribution between domain 1 and domain 2,
then compensate drift compact.

4 Classifier\boundary

Transfer learning—> | = -——o 2%9.2)°

b Aligned g Drift comppensation

L. Zhang and D. Zhang, “Domain adaptation extreme learning machines for
drift compensation in e-nose systems,” IEEE Trans. Instru. Measu., 2015.



Contents

* Part Il: Transfer learning: Concept, Theory and
Algorithms



Difference from Calibration Transfer

e Calibration transfer in E-nose mainly refers to instrumental
calibration between systems (master vs. slave).

v'Standardization is the classical technique for calibration
transfer, including standardization on model coefficients f,
sensor response x, and prediction output y.

v'Standardization on sensor responses such as direct
standardization (DS), piece-wise direct standardization (PDS),
OSC, CC, and GLSW are most popular.

e But, Transfer learning is a new learning methodology towards
out-of-distribution generalization and adaptation.

R. Laref, et al., “Support vector machine regression for calibration transfer
between electronic noses dedicated to air pollution monitoring,” Sensors, 2018.
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A Revisit of Machine Learning

* Machine learning is a modeling technique with
statistics for parameters estimation of unknown func.

* To be simple, given a dataset (X, y) with label y, a
statistical learning model is to find a mapping func.
(hypothesis) f(.) between X and y, such that

y=Ff(x)
* A learning problem to be solved is how to find f(.)?
* Many learning techniques from shallow to deep.
* Gradient descent based optimization techniques.



A Revisit of Machine Learning

 To find an optimal mapping (solution) f(.), machine
learning is transformed to an optimization technique.

* A general optimization (minimization) problem of
learning is,

min R[Pr, 0, 1(z.y.0)] = E,.ypr [1(2,.0)

* R[.] is the expected risk defined by the loss function
with input (X,y) sampled from a probabilistic
distribution Pr and parameter 6 of f(.)

* Pr should be an independent identical distribution (i.i.d.)
of test samples.

13



A Revisit of Machine Learning

* However, due to the infinite space of the data
distribution, we can only have a subset of the data (i.e.,
training data). P .

X

bk e

* So, the expected risk minimization is transformed into
an empirical risk optimization problem,

(e

g R[Prv 91 Z(;I‘, U" 6)] — E(a’,y)wPr [Z((r, U" 9)]

1
RemplZ.0,1(x,y.0)] = — Z i, yi, 0)
=1

=1

Where m is the size (number) of the finite training subset
sampled from the distribution Pr. 14



A Revisit of Machine Learning

* Okay, now we can have a view of a general machine learning
framework (Probably Approximate Correct, PAC).

Hypothesis A with low error rate

\

Test sample x » High success rate of prediction

* A prior assumption is the i.i.d. condition.

The training set and test sample should be sampled from an
independent identical distribution (i.i.d.)

Unfortunately, i.i.d. is not realistic. What should we do?

15



Dilemma of Non i.i.d.

* Generalization is the final objective of ML task.

* The optimized parameter 6 of the mapping
function f (.) on a training subset sampled from Pr
often fails to generalize a test subset sampled from
a non i.i.d. distribution Pr’.

Fail to generalize

— —
»

Train set (Pr) Test set (Pr’)

* This is analogy to sensor drift (distribution shift),
which opens the research on TL for drift in e-nose.

16




A Preliminary of Transfer Learning

Toy Examples:
Semantic related but distribution different tasks

Behavior learning skills (domain common knowledge )

B
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Computer Vision Natural Language Processing Text Recognition
(image classification) (translation) 17




Fine-tune Paradigm

* Transfer learning has been a widely used technique
in a wide spread of applications.

* In deep learning era, you may hear from about the
“fine-tune” technique for down-stream tasks.

CV tasks Intelligent RemQte Indl.Jstr!aI
cameras sensing application
Huge data Fine<tune={transferabletraining) model/network is a key step
(ImageNet)

Smart Autonomous Medical

: . : Smart cit
Robotics vehicles image Y



A Preliminary of Transfer Learning

Problem definition:

Given a target task (D;) without labels (or few labels),
how to learn a reliable predictor/classifier for Dy,

Not feasible? (TL emerges)

* A sufficiently labeled, semantic related but
source task (D) is leveraged as
auxiliary training data.

* Two key points:
1) Overcomes the label deficiency problem;
2) But introduces non i.i.d. problem between D; and Dq



A Preliminary of Transfer Learning

History of Transfer Learning (1990s-2020s):

Pan S.J. and Yang Q. (Survey on Transfer learning)
Pratt L. Saenko et al. (Visual domain adaptation)

(Neural network) Ben-David et al.

(Domain adaptation theory)

D () () () (Omm)
= Budding period Boom period < Explosion period
1991 2006 2010 2015 2020s
(bud) (milestone) (milestone) (milestone) (mature)

Long et al. (Deep network adaptation)
Ganin et al. (Adversarial domain adaptation)
Tzeng et al. (Deep adversarial transfer)



Definition of TL

What is transfer learning?

Transfer learning or domain adaptation aims to leverage a
sufficiently labeled, distribution different but semantic related
source domain for training and recognizing target domain
samples.

SVM/ANN/ELM - - - o, W
S B> D
domain algorithms parameters
E-nose data I l
(moment 1)
Unlabeled/Few- Unlabeled target

E-nose data E-nose data
(batch i) (batch i)

21



Domain Adaptation Theory

Why are transfer learning models or algorithms
effective and reliable?

Namely, how to guarantee the models or algorithms
to have low generalization error on target data?

Ben-David Shai et al. induced a generalization bound
of domain adaptation, widely used as a theoretical
guidance for a series of models and algorithms.

Ben-David, S., Blitzer, J., Crammer, K., & Pereira, F. (2006). Analysis of
representations for domain adaptation. In: Advances in neural information
processing systems



Domain Adaptation Theory

Shai Ben-David’s generalization bound theorem:

* To be simple, the expected target error €1-(h) is
bounded as (proof based on triangular inequality is
removed)

4 2em 4 R
er(h) < és(h) + \/— (d log i:n + log g> + dy(Ds.Dr) + A
m d _

 H is the set of hypothesis.
* The upper bound of e(h) consists of four terms.

Ben-David, S., Blitzer, J., Crammer, K., & Pereira, F. (2006). Analysis of representations
for domain adaptation. In: Advances in neural information processing systems



Distribution Difference Measure

Distribution alighment is the key part of transfer
learning.

How to measure distribution difference between two
distributions P and Q?

* MMD (Maximum Mean Discrepancy) (Gretton et al. NIPS’06,
NIPS’09, JMLR’12)

e HSIC (Hilbert Schmidt Independence Criterion) (Gretton et al.
ALT’05; Yan et al. TCYB’17, Wang et al. ICCV’17, CRTL)

* Bregman divergence (Si et al. TKDE’10, TSL)

* Moment statistics (Herath et al. CVPR’17, ILS; Sun et al.
arXiv’'17, CORAL; Peng et al. ICCV’19)




Theory---->Algorithm

* Induced by the generalization bound theory, a
number of models and algorithms are emerged, by
focusing on three components during design.

1) Source error €g(h)
2) Domain discrepancy dyan s, Ur)
3) Combined error A = minyey es(h) + er(h)



Transfer Learning Algorithm

How to design TL/DA models and algorithms?

* A taxonomy:

TL/DA models and
algorithms

Partial target No target
labels labels
Classifier Feature

eweighting

2007 »2023

adaptation adaptation




MMD

(Gretton, et af}

Domain Adaptation

and Upper-bound Theory '/

(Ben-David, et al.) /
Neural Network Transfer ; /
(Pratt L.)
Bud of Transfer /

{ Prgtt etal.)

/ / x"
'“_L——_>Deep Learning -—_-—’— /

Impossibility Theory of DA
(Ben-David, et al.)
Visual Domain Adaptation / LSDT (Zhang, et al.)

(Saenko, et al.) /' DTSL (Xu, etal.)

Survey of Transfer Learning /-f - EORAL (Sun and Saenko)
(Pan and Yang) // RTML (Ding, et al.)
s SGF (Gopalan, et al.) / /

/ / JGSA (Zhang, et al.)

SDA (Sun and Saenko)
LTSL (Shao et al.)

TCA (P, t al. /
/ Y, (Pan, et al.) / / /" MCTL (Zhang, et al.)
GFK (Gong, et al.) / / _
’ / / / , CRAFT (Chen, et al.)
/ / /” SA (Sun and Saenko) / /
f,/ / /.f" JDA (Long et al.) / /f /S _,-'f GSL (Zhang, et al.)
/ / /' HFA(lietal) / /S S

Universal

1991 1993 2006 2007 ~ 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 Representation
2011 . 2017 2018 s / 20172018
/ » Instance Re-weighting 2016 2020 » Deep Adaptation
] ) DRCN (Li, et al.)
:nstance Wei gf;ﬂn DeCAFE TransNorm (Wang, et al.)
Jiang and Zhai —treving
Co-training (Donahue, et al. SAN (Wang, et al.)
(Chen, et al. 'JWMMD DDC (Tzeng, et al. IWAN (Zhang, et al.)
DAN (L tal) ™
(yan, et al.)RAAN (Long, et al.) . JAN (Long, et al.)
(Chen, et al.) RTN (Long, et al.)
2007, 2009 2011 2014 2016 2018
- - _ » Classifier Adaptation 20 201_? 2018\ 2020 » Adversarial Adaptation
\ \-\ \\ N\ \ \ \\\ \
ASVM \ -\_\ \ N\ GAN ‘\\ \ STAR (Lu, et al.)
(Yang, et CS‘E‘SVM -\_\ \ \\\ \\\ (Goodfellow, et al.), \, RDA (Fu, et al.)
N N\ A\ GRL (Ganin, et al.) "\ N\ Source-free (Kundu, et al.)
(Duan, etal.) - N \ \ MEDA DANN (Ajakan, et al )\\ \
AMKL&DTMKL, (W, et al) (Asaran, €L ati\ MADA (Pei, et al.)
(Duan, et G‘,')AR”_ N, g. - Domain Confusion \\\ CAN (zhang, et al.)

(Long, et GJ’-)\\{KarbaFayghareh, etal.)

KBTL

(Gonen et al.) (Zhang and Zhang)

N
\ OBTL (Tzeng, et al.)

ADDA CDAN (Long, et al.)
(Tzeng, et al.) MCD (Saito, et al.)
CyCADA (Hoffman, et al.)

EDA

L. Zhang and X. Gao, Transfer Adaptation Learning: A Decade Survey, IEEE TNNLS 2022.
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TL Algorithm for E-nose

Since 2015, transfer learning/domain adaptation
methodology has been widely used for drift
adaptation(a)/instrumental calibration (b) in E-noses.

Source Source
: Temporal :
domain drift > domain
(batch 1) (batch i)
Master Master

-
Source Spatial arget

domain domain
(Dataset 1) (Dataset 2)

Master Slave

(a) TL for drift compensation

(b) TL for instrumental calibration

29




TL Algorithm for E-nose

* Two branches in recent years:

* Classifier transfer (parameter adaptation): How to
learn domain-common classifier adapted to two
domains?

* Feature transfer (subspace adaptation ): How to
learn domain-common feature representation
(projection) between two domains?



TL Algorithm for E-nose

* Two branches in recent years:

* Classifier transfer (parameter adaptation): How to
learn domain-common classifier adapted to two
domains?



Domain Adaptive ELM (DAELM)

Consider M target tasks with few labeled data by learning
ELMs on a sufficiently labeled source domain.

Source (batch
1 or master)

labeled labeled . labeled

Target 1 (slave 1) Target 2 (slave 2) Target M (slave M)

L. Zhang and D. Zhang, “Domain adaptation extreme learning machines for Drift
Compensation in E-nose Systems,” IEEE Trans. Instru. Meas., vol. 64, no. 7, 2015.



Extreme Learning Machine

ELM was first proposed for solving a single-layer
feed-forward network (SLFN) by Huang et al. 2004

Output Node

L Hidden Nodes

n Input Nodes

G.-B. Huang, Q.-Y. Zhu, and C.-K. Siew, “Extreme learning machine: Theory and applications,”
Neurocomputing, vol. 70, nos. 1-3, pp. 489-501, Dec. 2006.

G.-B. Huang, H. Zhou, X. Ding, and R. Zhang, “Extreme learning machine for regression and
multiclass classification,” IEEE Trans. Syst., Man, Cybern. B, Cybern., vol. 42, no. 2, pp. 513—-

529, Apr. 2012 33



Extreme Learning Machine

Model and Algorithm:

* Given N samples [x,,X,, . .., X, ] and their corresponding
ground truth [t,t,, ..., t, ], a general ELM model|,

[ N
. 2
min Lerm =5 IBIF+C-5-> |&]
=1
st Hx)B=t—&, i=1,...,N

* 3 is the output weights to be solved. H is the random
hidden layer. Cis the penalty and ¢ is the prediction error.



Extreme Learning Machine

Model and Algorithm:

* Analytically determined solution (closed-form soultion)

Overdetermined problem (N>L)

I —1
B* = (HTH n EL) HTT

Underdetermined problem (N<L)

I _1
g* =H' (HHT n FN) T

H is the random weights in hidden layer

ELM does not need to be tuned like Back-propagation.



Common Problem of ELM

Similar to general machine learning, ELM is not transferable:
 For classification problem, labels are needed for ELM.
 ELM is also conditional on the distributions (i.i.d.).

e ELM classifier is not transferable to other domains.

I P(s) # P(t)

P(training) —> " P(test)

v

ELM is also not distribution adaptive

* Therefore, we expect some advanced versions of ELM by
introducing domain adaptation and transfer learning.



Domain Adaptive ELM (DAELM)

DAELM.v1 (unlabeled target data is not used)

Dy

__________________________

_______________

min .—|||35|| +Cs5 ZHs H CT ZH‘?’ H

Bsksgri2 2=
Hips =t — €L i=1,...Ns
S.t. J ‘j ‘j .
HyfBs =ty — &7, j=1,..., Nt

37

Note that \beta is classifier



Domain Adaptive ELM (DAELM)

DAELM.v2 (unlabeled target data is used with pseudo labels)

. | |
min Loaeiy-1(B7) = 5187 I? + Crlitr —Hr By I
T

1 <~
+ Cru5 My 5~ Hy, By
N\

) e Pre-trained source base classifier
Note that \beta is classifier 38



Domain Adaptive ELM (DAELM)

Prediction/inference stage of unlabeled target data:

DAELM.v1:

y/%u — H’}\'ru ' BS.‘* k=1,....Nry

DAELM.v2:

y[}u — H/%u ' ﬁTa k=1,....Nry

Note that \beta is classifier



Sensor response

Experiment

E-nose drift data via (10 batches, 16 gas sensors, acquired from

2008 to 2011 containing 36 months by Vergara et al. 2012):

Batch ID Month Acetone Acetaldehyde Ethanol Ethylene Ammonia Toluene Total
Batch 1 1,2 90 98 83 30 70 74 445
Batch 2 3~10 164 334 100 109 532 5 1244
Batch 3 11,12, 13 365 490 216 240 275 0 1586
Batch 4 14, 15 64 43 12 30 12 0 161

Batch 5 16 28 40 20 46 63 0 197
Batch 6 17,18, 19, 20 514 574 110 29 606 467 2300
Batch 7 21 649 662 360 744 630 568 3613
Batch 8 22,23 30 30 40 33 143 18 294
Batch 9 24, 30 61 55 100 75 78 101 470
Batch 10 36 600 600 600 600 600 600 3600

P

before(bl)
after(b2)
after(b7)
after(bl0)

0 20 40

A

L. Zhang and D. Zhang, “Domain adaptation extreme learning machines for Drift
Compensation in E-nose Systems,” IEEE Trans. Instru. Meas., vol. 64, no. 7, 2015.

0 20 40

0 0
0 20 40

Sample index




Gas classification performance

Batch 1 is fixed as source domain

Experiment

Batch ID Batch 2 Batch 3 Batch 4 Batch 5 Batch 6 Batch 7 Batch 8 Batch 9 Batch 10 Average
CC-PCA 67.00 48.50 41.00 35.50 55.00 31.00 56.50 46.50 30.50 45.72
SVM-rbf 74.36 61.03 50.93 18.27 28.26 28.81 20.07 34.26 34.47 38.94
SVM-gftk 72.75 70.08 60.75 75.08 73.82 54.53 55.44 69.62 41.78 63.76
SVM-comgtk 74.47 70.15 59.78 75.09 73.99 54.59 55.88 70.23 41.85 64.00
ML-rbf 42.25 73.69 75.53 66.75 71.51 54.43 33.50 23.57 34.92 53.57
ML-comgfk 80.25 74.99 78.79 67.41 77.82 71.68 49.96 50.79 53.79 67.28
ELM-rbf 70.63 66.44 66.83 63.45 69.73 51.23 49.76 49.83 33.50 57.93
Our DAELM-S(20) 87.57 96.53 82.61 81.47 84.97 71.89 78.10 87.02 57.42 80.84
Our DAELM-S(30) 87.98 95.74 85.16 95.99 94.14 83.51 86.90 100.0 53.62 87.00
Our DAELM-T(40) 83.52 96.34 88.20 99.49 78.43 80.93 87.42 100.0 56.25 85.62
Our DAELM-T(50) 97.96 95.34 99.32 99.24 97.03 83.09 95.27 100.0 59.45 91.86
Batch k is fixed as source domain and batch k+1 is target domain
Batch ID 12 23 3—4 455 5—6 6—7 7—8 8—9 9—10 Average
SVM-rbf 74.36 87.83 90.06 56.35 42.52 83.53 91.84 62.98 22.64 68.01
SVM-gtk 72.75 74.02 77.83 63.91 70.31 77.59 78.57 86.23 15.76 68.56
SVM-comgfk 74.47 73.75 78.51 64.26 69.97 77.69 82.69 85.53 17.76 69.40
ML-rbf 42.25 58.51 75.78 29.10 53.22 69.17 55.10 37.94 12.44 48.17
ML-comgfk 80.25 98.55 84.89 89.85 75.53 91.17 61.22 95.53 39.56 79.62
Ensemble 74.40 88.00 92.50 94.00 69.00 69.50 91.00 77.00 65.00 80.04
ELM-rbf 70.63 40.44 64.16 64.37 72.70 80.75 88.20 67.00 22.00 63.36
Our DAELM-S(20) 87.57 96.90 85.59 95.89 80.53 91.56 88.71 88.40 45.61 84.53
Our DAELM-5(30) 87.98 96.58 89.75 99.04 84.43 91.75 89.83 100.0 58.44 88.64
Our DAELM-T(40) 83.52 96.41 81.36 96.45 85.13 80.49 85.71 100.0 56.81 85.10
Our DAELM-T(50) 97.96 95.62 99.63 98.17 97.13 83.10 94.90 100.0 59.88 91.82




TL Algorithm for E-nose

* Two branches in recent years:

* Feature transfer (subspace adaptation ): How to
learn domain-common feature representation
(projection) between two domains?



Cross-domain ELM

* In DAELM model, ELM is used as a classifier ().
Here, we consider it as a feature projector (f).

A
Source domain Tareet domain | Ot€P 1: Project data into a unified
® ,‘l‘. T 2SRV subspace with discrimination
00 Ce@®@® W iuss 2 . = e . . . . .
™ oSy ® Step 2: Minimize the distribution shift
> .class']

; . with mean distribution discrepancy
O A .
V )/ Step 3: Energy preservation

o £

______ o 2
—"/ A Yo c»ﬂz. - Ns Nt
e o0 ® oo % e o Tr(B7S%8) + XollBI%: + M| _Zﬁfh N ZﬁT"'f’
' > ‘ - min - A £
e - i ToS T T
Classifier decision Subsoace f Witk 5} Tr([ﬁ SB,@) + /\gTr(ﬁ HTHT[)’)
it eansiiesny Final model (objective function)

Y. Liu, L. Zhang, P. Deng and Z. He, “Common Subspace Learning via Cross-domain
Extreme Learning Machine,” Cognitive Computation, 2017. 43



Experiment

Gas classification performance on our E-nose data (3 systems)

E-nose Formaldehyde Benzene  Toluene  Carbon Nitrogen Ammonia  Total
System monoxide dioxide

Master 126 72 66 58 38 60 420
Slave 1 108 108 106 98 107 81 608
Slave 2 108 108 94 95 108 84 576

Table 2 Recognition accuracy (%) with sensor calibration under setting 1

Cross-domain SVM ELM

ELM  KemelELM PCA LDA LPP NPE NCA MDS LFDA SGF CdELM CdELM

tasks (sigmoid)  (rbf) (sigmoid) (rbf)
Master — slave 1 51.97 55 5459 53.63 55.05 55.56 53.95 53.62 41.28 51.15 61.84 55.10 64.90 66.39
Master — slave 2 60.59 59.83 61.16 6193 60.88 61.09 57.81 54.69 33.85 58.51 61.63 5749 68.11 68.45

Table 3  Recognition accuracy (%) with sensor calibration under

setting 2 (task 1)

Table 4 Recognition accuracy (%) with sensor calibration under
setting 2 (task 2)

Methods " Average Methods ny Average
1 3 5 7 9 1 3 5 7 9

SVM 59.14 6322 62.80 7049 70.76 65.28 SVM 69.65 7276 7363 7416 7490 73.02
ELM(sigmoid) 59.05 6510 69.52 7120 7218 6741 ELM(sigmoid) 6418 6735 6791 6809 6929 67.36
ELM(rbf) 6246 6583 67.61 6936 69.87 67.03 ELM(rbf) 6535 6841 6863 6871 6960 6814
PCA 63.92 6732 70.02 7336 7383 69.69 PCA 65.84 6927 70.18 7223 7215 69.93
LDA 63.84 67.83 7033 7148 7345 69.39 LDA 65.23 6876 6985 7TL74 7307 69.73
LPP 6546 06983 7145 7208 7148 70.06 LFP 69.82 7419 7363 7285 7682 7346
NPE 6478 64.07 6349 7155 71.84 67.15 NPE 71.05 7115 7143 7228 7414 72.01
NCA 5249 50.85 53.81 5000 63.00 54.03 NCA 56.32 4749 5201 5562 S8.03 53.90
MDS 61.13 6475 6557 7032 7292 6694 MDS 7211 7348 7381 7528 7529 74.00
LFDA 62.13 67.12 71.63 7686 7491 70.53 LFDA 6526 70.61 73.08 7547 77.01 72.29
SGF 66.61 6695 67.13 70.14 7274 68.71 SGF 68.07 71.51 7308 7303 7356 7185
CdELM(sigmoid) 67.88 71.53 73.50 7534 7636 7292 CdELM(sigmoid) 74.47 7535 7578 77.56 78.09 76.25 44
CdELM(rbf) 68.34 7332 7442 7507 7735 7370 CdELM(rbf) 7413 7606 77.649 7895 7918 T77.21




Cross-domain Discriminative Subspace Learning (CDSL)

* Feature transfer aims to learn a domain-invariant
mapping, such that the domain shift caused by
instrumental drift is removed in the latent subspace.

Data acquisition
000000 —> @)

000000 >

E-nose system A (master)

...................................................................

Model Training Phase on System A

1
Cross-domain |
Learning

odel Parameters

Perception Data acquisition,
—> |oooo000| __— Patern |
= 000000 Recognition

S

1
\Decision |

E-nose system B (slave)

Model Testing Phase on System B
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Cross-domain Discriminative Subspace Learning (CDSL)

* How to learn the feature mapping P (linear transform)?

N
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L. Zhang, Y. Liu and P. Deng, “Odor recognition in multiple E-nose systems with
cross-domain discriminative subspace learning,” IEEE Trans. Instr. Meas., 2017. 46



Experiment

Gas classification performance on our E-nose data (3 systems)

Carbon Nitrogen
E-nose systems Dimensionality | Toluene | Benzene | Ammonia . o8 Formaldehyde | Total
monoxide dioxide
Source domain 6 66 72 60 58 38 126 420
Target domain 1 6 106 108 81 98 107 108 608
Target domain 2 6 94 87 84 95 108 108 576
class 6
Master
°:',‘ — Slave 1
s s Slave 2
e
2
[}
i
2 4 6
Cross-domain
task SVM PCA LDA LPP NPE NCA MDS LFDA GFK SGF SA OSsC DS GLSW | CDSL
Source domain —
target domain 1 51.97 | 51.97 | 51.97 | 5395 | 53.62 | 41.28 | 51.15 61.84 33.88 55.10 | 41.10 | 34.38 | 45.00 40.46 71.88
Source domain —
target domain 2 60.59 | 60.59 | 56.77 | 57.81 | 54.69 | 33.85 | 58.51 61.63 32.81 5749 | 31.12 | 36.46 | 42.62 53.65 71.88

10% improvement on the average classification accuracy with domain transfer
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Domain Regularized Component Analysis (DRCA)

* Motivation: Principle component analysis (PCA) is
used for dimension reduction, but only on single
domain, and does not work on multiple domains
with shift.

* We therefore consider reqularize the PCA with target
domain and simultaneously reduce domain shift.

PCA| =k |Regularization| =k |Shiftreduction
source target alignment

L. Zhang, et al., “Anti-drift in E-nose: A Subspace Projection Approach with Drift
Reduction,” Sensors and Actuators B: Chemical, 2017.



Domain Regularized Component Analysis (DRCA)

PCA| =k |Regularization| =k |Shiftreduction

source target alignment
1 & 1 h
maxTr (PTXsXIP) + A - Tr (P"XrX]P) mpin||N—SZ;PTx§ - 1PTx’T||
1= J= 2

Tr (P' (XsXg + A - XrX1) P)
2

Ng N
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P

L. Zhang, et al., “Anti-drift in E-nose: A Subspace Projection Approach with Drift
Reduction,” Sensors and Actuators B: Chemical, 2017.



Domain Regularized Component Analysis (DRCA)
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Fig. 3. Subspace adaptation of synthetic data by using the proposed DRCA method.
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Experiment

E-nose drift data via (10 batches, 16 gas sensors, acquired from
2008 to 2011 containing 36 months by Vergara et al. 2012):

Batch ID Month Acetone Acetaldehyde Ethanol Ethylene Ammonia Toluene Total
Batch 1 1,2 90 98 83 30 70 74 445
Batch 2 3~10 164 334 100 109 532 5 1244
Batch 3 11,12, 13 365 490 216 240 275 0 1586
Batch 4 14, 15 64 43 12 30 12 0 161
Batch 5 16 28 40 20 46 63 0 197
Batch 6 17,18, 19, 20 514 574 110 29 606 467 2300
Batch 7 21 649 662 360 744 630 568 3613
Batch 8 22,23 30 30 40 33 143 18 294
Batch 9 24,30 61 55 100 75 78 101 470
Batch 10 36 600 600 600 600 600 600 3600
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Experiment

E-nose drift data via (10 batches, 16 gas sensors, acquired from
2008 to 2011 containing 36 months by Vergara et al. 2012):
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Experiment

Recognition Accuracy (%) Under Experimental Setting 1.

Batch ID Batch 2 Batch 3 Batch 4 Batch 5 Batch 6 Batch 7 Batch 8 Batch 9 Batch 10 Average
PCAsvm 82.40 84.80 80.12 75.13 73.57 56.16 48.64 67.45 49.14 68.60
LDAsym 47.27 57.76 50.93 62.44 41.48 37.42 68.37 52.34 31.17 4991
CC-PCA 67.00 48.50 41.00 35.50 55.00 31.00 56.50 46.50 30.50 4572
SVM-rbf 74.36 61.03 50.93 18.27 28.26 28.81 20.07 34.26 34.47 38.94
SVM-gfk 72.75 70.08 60.75 75.08 73.82 54.53 55.44 69.62 41.78 63.76
SVM-comgfk 74.47 70.15 59.78 75.09 73.99 54.59 55.88 70.23 41.85 64.00
ML-rbf 42.25 73.69 75.53 66.75 77.51 54.43 33.50 23.57 34.92 53.57
ML-comgfk 80.25 74.99 78.79 67.41 77.82 71.68 49.96 50.79 53.79 67.28
ELM-rbf 70.63 66.44 66.83 63.45 69.73 51.23 49.76 49.83 33.50 57.93
0sc 88.10 66.71 54.66 53.81 65.13 63.71 36.05 40.21 40.08 56.50
GLSW 78.38 69.36 80.75 74.62 69.43 44.28 48.64 67.87 46.58 64.43
DS 69.37 46.28 41.61 58.88 48.83 32.83 2347 72.55 29.03 46.98
DRCA 89.15 92.69 87.58 95.94 86.52 60.25 62.24 72.34 52.00 7763

Recognition Accuracy (%) Under Experimental Setting 2.

Batch ID 1-2 2-3 3—-4 4 -5 5—-6 6—7 7— 8 8—9 9—-10 Average
PCAsym 82.40 98.87 83.23 72.59 36.70 74.98 58.16 84.04 30.61 69.06
LDAsym 47.27 46.72 70.81 85.28 48.87 75.15 77.21 62.77 30.25 60.48
SVM-rbf 74.36 87.83 90.06 56.35 42.52 83.53 91.84 62.98 22.64 68.01
SVM-gfk 72.75 74.02 77.83 63.91 70.31 77.59 78.57 86.23 15.76 68.56
SVM-comgfk 74.47 73.75 78.51 64.26 69.97 77.69 82.69 85.53 17.76 69.40
ML-rbf 42.25 58.51 75.78 29.10 53.22 69.17 55.10 3794 12.44 48.17
ML-comgfk 80.25 98.55 84.89 89.85 75.53 91.17 61.22 95.53 39.56 79.62
ELM-rbf 70.63 40.44 64.16 64.37 72.70 80.75 88.20 67.00 22.00 63.36
GLSW 78.38 97.04 81.99 73.60 36.57 74.48 60.54 81.91 26.31 67.87
DS 69.37 53.59 67.08 37.56 36.30 26.57 49.66 42.55 25.78 45,38
DRCA 89.15 98.11 95.03 69.54 50.87 78.94 65.99 84.04 36.31 74.22

Classification accuracy by training SVM on transformed data
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Experiment

Gas classification performance on our E-nose data (3 systems)

E-nose System DoF Formaldehyde Benzene Toluene Carbon monoxide Nitrogen dioxide Ammonia Total
Master (no drift) 6 126 72 66 58 38 60 420
Slave 1 (drift + shift) 6 108 108 106 98 107 81 608
Slave 2 (drift + shift) 6 108 87 94 95 108 84 576

Setting 1 (Drift): Due to that there is also sensor discreteness
between slaves and master, the sensor calibration between slaves
and master is made by using linear regression according to [38].
Therefore, only drift exists between the source and target data.

Setting 2 (Drift +Shift): The sensor calibration step is omitted,
which implies that both the sensor drift and shift exist between
the source and target data.

Recognition Accuracy (%) With Sensor Shift Calibration (Setting 1). Recognition Accuracy (%) Without Sensor Shift Calibration (Setting 2).

Task SVM PCA LDA GLSW DS DRCA Task SVM PCA LDA GLSW DS DRCA

master — slavel 45,89 46.22 4211 41.45 40.30 57.07 master — slavel 51.97 51.97 51.97 47.53 40.46 58.55
master — slave2 31.08 41.84 41.32 48.09 39.76 52.95 master — slave2 60.59 60.59 56.77 59.38 40.63 61.63
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* Summary vs. Future



Summary vs. Future

In this talk, a systematic introduction of transfer learning and
its application for chemical sensors is given.

* Transfer learning plays a vital role in E-noses with robustness.
* Drift compensation still faces a challenge for real application.

 Since pattern recognition is a key unit for E-nose instrument,
advanced transfer learning technique is wonderful.

E-nose faces real application scenario in the future.

Gas sensors are still the core component of E-nose.
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